Learning with hidden variables

نویسندگان

  • Yasser Roudi
  • Graham Taylor
چکیده

Learning and inferring features that generate sensory input is a task continuously performed by cortex. In recent years, novel algorithms and learning rules have been proposed that allow neural network models to learn such features from natural images, written text, audio signals, etc. These networks usually involve deep architectures with many layers of hidden neurons. Here we review recent advancements in this area emphasizing, amongst other things, the processing of dynamical inputs by networks with hidden nodes and the role of single neuron models. These points and the questions they arise can provide conceptual advancements in understanding of learning in the cortex and the relationship between machine learning approaches to learning with hidden nodes and those in cortical circuits.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Learning Hidden Variables in Probabilistic Graphical Models

In the past decades, a great deal of research has focused on learning probabilistic graphical models from data. A serious problem in learning such models is the presence of hidden, or latent, variables. These variables are not observed, yet their interaction with the observed variables has important consequences in terms of representation, inference and prediction. Consequently, numerous works ...

متن کامل

"Ideal Parent" Structure Learning for Continuous Variable Networks

In recent years, there is a growing interest in learning Bayesian networks with continuous variables. Learning the structure of such networks is a computationally expensive procedure, which limits most applications to parameter learning. This problem is even more acute when learning networks with hidden variables. We present a general method for significantly speeding the structure search algor...

متن کامل

The Hidden Life of Latent Variables: Bayesian Learning with Mixed Graph Models

Directed acyclic graphs (DAGs) have been widely used as a representation of conditional independence in machine learning and statistics. Moreover, hidden or latent variables are often an important component of graphical models. However, DAG models suffer from an important limitation: the family of DAGs is not closed under marginalization of hidden variables. This means that in general we cannot...

متن کامل

Discovering Hidden Variables: A Structure-Based Approach

A serious problem in learning probabilistic models is the presence of hidden variables. These variables are not observed, yet interact with several of the observed variables. As such, they induce seemingly complex dependencies among the latter. In recent years, much attention has been devoted to the development of algorithms for learning parameters, and in some cases structure, in the presence ...

متن کامل

Learning Hidden Variable Networks: The Information Bottleneck Approach

A central challenge in learning probabilistic graphical models is dealing with domains that involve hidden variables. The common approach for learning model parameters in such domains is the expectation maximization (EM) algorithm. This algorithm, however, can easily get trapped in suboptimal local maxima. Learning the model structure is even more challenging. The structural EM algorithm can ad...

متن کامل

بررسی تجارب دانشجویان از برنامه درسی مستتر در دانشکده پرستاری و مامایی دانشگاه علوم پزشکی اصفهان

  Background : The hidden curriculum has great impact on students' learning. The present study was conducted on Nursing and Midwifery students to determine their experience with the hidden curriculum. Materials and methods : It was a combined survey achieved in two stages on Nursing and Midwifery students. During the first stage, a free interview was carried out to determine their attitudes tow...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Current opinion in neurobiology

دوره 35  شماره 

صفحات  -

تاریخ انتشار 2015